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Mode-coupling approach to non-Newtonian Hele-Shaw flow
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The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid
by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and
examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing
the early nonlinear evolution of the interface modes is derived in detail. Owing to vorticity arising from our
modified Darcy’s law, we introduce a vector potential for the velocity in contrast to the conventional scalar
potential. Our analytical results address how mode-coupling dynamics relates to tip splitting and sidebranching
in both shear-thinning and shear-thickening cases. The development of non-Newtonian interfacial patterns in
rectangular Hele-Shaw cells is also analyzed.

DOI: 10.1103/PhysRevE.67.026313 PACS number~s!: 47.50.1d, 47.20.Ma, 47.54.1r, 68.05.2n
g
he

id
s
u

te

e
u-
m
la
iz
s

en
is-

ir
a
in
n
ll

ow

an

y
ie

pres-
he-

m.
-
der

a
w.
dex
ore
w-
tors
g
ithin
n a

re
t. It
nn
ly

-
of

hav-

le-
-

,
u-
s

cal

ar-
d-
kly

ns
.

I. INTRODUCTION

The celebrated Saffman-Taylor instability@1# arises when
a less viscous fluid pushes a more viscous one in the thin
of a Hele-Shaw cell. The less viscous fluid can be eit
injected at an end of a channel-shaped cell~rectangular ge-
ometry! @1#, or from the center of the cell~radial geometry!
@2#. In both geometries the interface separating the flu
may deform, leading to the formation of fingerlike pattern
commonly known as viscous fingers. During the past fo
decades, the viscous fingering instability has been ex
sively studied, both theoretically@3# and experimentally@4#.
Much of the research in this area has examined the cas
which the fluids involved are Newtonian. For Newtonian fl
ids, it is observed that the fingers grow and compete dyna
cally, resulting in a single stable finger in the rectangu
geometry, and in patterned structures markedly character
by the spreading, and subsequent splitting of the fingertip
the radial setup.

A whole different class of interfacial patterns arise wh
the Saffman-Taylor instability is studied by taking the d
placed fluid as non-Newtonian@4,5#. In contrast to most
Newtonian fluids, non-Newtonian fluids differ widely in the
hydrodynamic properties, with different fluids exhibiting
range of effects from elasticity and plasticity to shear th
ning and shear thickening. Experiments using no
Newtonian fluids in radial and rectangular Hele-Shaw ce
have revealed a wide variety of new patterns, showing sn
flakelike shapes@4,6# and fracturelike structures@7,8#. In-
stead of the traditional, tip-splitting-dominated Newtoni
patterns, these experiments@4,6–8# exhibit dendritic fingers
and sidebranching. This morphological diversity and rich d
namical behavior motivated a number of theoretical stud
of the problem@9–13#. One major difficulty faced by re-
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searchers is that, as opposed to the Newtonian case, the
sure field is no longer Laplacian. This implies a serious t
oretical challenge, sincea priori one would not be allowed to
directly apply a Darcy’s law approach to tackle the proble

The instability of radial Hele-Shaw flows involving non
Newtonian fluids has been studied theoretically by Sa
et al. @9#. They considered power law fluids, and performed
linear stability analysis without making use of Darcy’s la
Essentially, they showed that decreasing the power law in
dramatically increases the growth rates leading to a m
rapid development of the fingering patterns. A Darcy’s la
type approach has been proposed by Bonn and collabora
@10#. Bonnet al.suggested a modified Darcy’s law includin
a shear rate dependent viscosity, and showed that, w
their approach, the pressure field remains Laplacian. I
series of interesting papers Kondicet al. @11,12#, and subse-
quently Fastet al. @13#, extended ideas of Ref.@10# and de-
rived a generalized Darcy’s law from first principles, whe
viscosity depends upon the squared pressure gradien
turns out that the Darcy’s law formula proposed by Bo
et al. @10# follows from the more basic version rigorous
derived by Kondicet al. @11,12#. Efficient numerical simula-
tions performed in Refs.@12,13# have shown that shear thin
ning can suppress tip splitting and leads to the formation
dendritic structures, presenting a clear sidebranching be
ior.

Theoretical studies of the fully nonlinear stages of He
Shaw flow with non-Newtonian fluids rely heavily on inten
sive numerical simulations@12,13#. On the analytical side
the structure of the fingering dynamics in such complex fl
ids is largely restricted to linear stability investigation
@9,11#. Much less attention has been paid to the analyti
investigation of the dynamics that bridges theinitial ~purely
linear! andfinal ~fully nonlinear! time regimes. In addition,
theoretical as well as experimental analyses of flow of she
thickening fluids in Hele-Shaw cells still need to be a
dressed. In this paper, we carry out the analytical wea
ed
©2003 The American Physical Society13-1
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CONSTANTIN, WIDOM, AND MIRANDA PHYSICAL REVIEW E 67, 026313 ~2003!
nonlinear analysis for theintermediatestages of evolution,
and examinebothshear-thinning and shear-thickening cas
We adapt a weakly nonlinear approach originally develop
to study Newtonian Hele-Shaw flows@14,15#, to the non-
Newtonian situation. We focus on the onset of the nonlin
effects, and try to understand how mode-coupling dynam
leads to basic morphological features and behaviors obse
in non-Newtonian Hele-Shaw flows.

The paper is organized as follows: Section II formula
our theoretical approach. We perform a Fourier decomp
tion of the interface shape, and from an alternative form
Darcy’s law study the influence of weak shear effects on
development of interfacial patterns. In contrast to the ana
sis for Newtonian fluids, conventionally based on a sca
velocity potential, we employ a vector velocity potential c
pable of describing vorticity arising from the non-Newtoni
fluid flow. Coupled, nonlinear, ordinary differential equatio
governing the time evolution of Fourier amplitudes are d
rived in detail. Section III discusses both linear and wea
nonlinear dynamics. It concentrates on the effect of sh
thinning and shear thickening on fingertip splitting and sid
branching. Section III A briefly discusses our linear stabil
results. Linear results are useful and instructive, but do
allow accurate predictions of important interfacial featur
In Sec. III B, we show that some of these features can ind
be predicted and more quantitatively explained by our a
lytical mode-coupling approach. At second order we find
mechanism for fingertip splitting in non-Newtonian Hel
Shaw flow: it is suppressed~favored! for shear-thinning
~-thickening! fluids. Our results indicate the absence of sid
branching in the weak shear limit and early flow stages,
suggest that it could be enhanced~inhibited! for shear-
thinning ~-thickening! fluids. Section III C discusses mod
coupling in rectangular flow geometry. Our chief conclusio
are summarized in Sec. IV.

II. THE MODE-COUPLING DIFFERENTIAL EQUATION

The Hele-Shaw cell~Fig. 1! consists of two parallel plate
separated by a small distance. The cell thicknessb is consid-
ered to be much smaller than any other length scale in
problem, so that the system is essentially two dimensio
Consider the displacement of a viscous, non-Newtonian fl
by a Newtonian fluid of negligible viscosity in such confine

FIG. 1. Schematic configuration of radial flow in a Hele-Sha
cell. The inner fluid is Newtonian and has negligible viscosity. T
outer fluid is non-Newtonian. All physical parameters are define
the text.
02631
.
d

r
s
ed

s
i-
f
e
-
r

-

-
y
ar
-

ot
.
d
-

a

-
t

s

e
l.

id

geometry. The surface tension between the fluids is den
by s. The Newtonian fluid is injected at a constant areal flo
rateQ at the center of the cell.

The initial circular fluid-fluid interface is slightly per
turbed, R5R(t)1z(u,t) (z/R!1), where the time-
dependent unperturbed radius is given by

R~ t !5AR0
21

Qt

p
, ~1!

R0 being the unperturbed radius att50. The interface per-
turbation is written in the form of a Fourier expansion

z~u,t !5 (
n52`

1`

zn~ t !exp~ inu!, ~2!

where zn(t)5(1/2p)*0
2pz(u,t)exp(2inu) du denotes the

complex Fourier mode amplitudes andn50, 61, 62, . . .
is the discrete polar wave number. In our Fourier expans
~2!, we include then50 mode to keep the area of the pe
turbed shape independent of the perturbationz. Mass con-
servation imposes that the zeroth mode is written in term
the other modes asz052(1/2R)(nÞ0uzn(t)u2.

The relevant hydrodynamic equation for Newtonian He
Shaw flows, Darcy’s law@1,3#, states that the gradient of th
pressure is proportional to the fluid velocity, and oriented
the opposite direction with respect to the fluid flow

“p52
12m

b2
v, ~3!

wherev5v(r ,u) and p5p(r ,u) are, respectively, the gap
averaged velocity and pressure in the fluid. The viscosity
the fluid is represented bym. To model non-Newtonian
Hele-Shaw flows, we use a suitable form of the Darcy’s l
in the weak shear-thinning or -thickening limit. We follow
Bonn et al. @10# and consider their shear rate dependent v
cosity in the weak non-Newtonian limit (vt)2!1,

m~v2!'m0@12~12a!v2t2#, ~4!

wherev'v/b is the shear rate,v5uvu, t denotes the char
acteristic relaxation time of the fluid, andm0 is a constant,
zero-shear viscosity. The parametera measures the shea
dependence:a51 corresponds to the Newtonian fluids, an
a,1 (a.1) gives the shear-thinning~-thickening! case.

By substituing Eq.~4! into Eq. ~3!, we obtain an alterna-
tive form of Darcy’s law ideally suited to describe wea
non-Newtonian effects,

“P52v 1 dv2v. ~5!

Here P5@b2/(12m0)# p represents a generalized pressu
field, and d5(12a)(t/b)2 is a small parameter that ex
presses the non-Newtonian nature of the displaced fluidd
50 corresponds to the Newtonian case, whiled.0 (d,0)
describes the shear-thinning~-thickening! case. Taking the
divergence of Eq.~5! and using incompressibility (“•v
50) the pressure is seen to be anharmonic~nonvanishing

n
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MODE-COUPLING APPROACH TO NON-NEWTONIAN . . . PHYSICAL REVIEW E67, 026313 ~2003!
Laplacian!. Our subsequent analysis incorporates this eff
in contrast to the treatment in Ref.@10#. Indeed, an alternate
route to our Eq.~5! is to start with viscosity depending on th
square of the pressure gradient~as in Kondicet al. @11#!,
then approximate the pressure gradient with the velocity
small d.

Our pertubative approach keeps terms up to the sec
order inz and up to the first order ind. Considering the fact
that the viscosity of the Newtonian fluid is negligible, th
generalized pressure jump condition at the interface can
written as@3#

PuR52g k iuR , ~6!

whereg5b2s/(12m0) andk i is the curvature in the direc
tion parallel to the plates.

The weakly nonlinear approach to radial, Newtoni
Hele-Shaw flow developed in Ref.@15# related the fluid ve-
locity to a scalar velocity potentialv52“f, this replace-
ment made possible by the irrotational nature of the flow
Newtonian fluids. For non-Newtonian fluids, in contra
flows governed by the modified Darcy’s law~5! exhibit vor-
ticity. Hence, we perform our calculations using avector
potential v5“3A. The most general form of the vecto
potential can be written as

A5F Q

2p
u1 (

m,nÞ0
AmnS R

r D m

exp~ inu!G ẑ, ~7!

whereAmn are the Fourier coefficients of the velocity vect
potential andẑ is the outward unit normal to the upper ce
plate. The radial and polar components of the fluids velo
ties are

v r5
Q

2pr
1 (

m,nÞ0
inAmnS Rm

r m11D exp~ inu! ~8!

and

vu5 (
m,nÞ0

mAmnS Rm

r m11D exp~ inu!. ~9!

Note that the vector potential reduces to the unpertur
steady flow with a circular interface (v r5Q/2pr , vu50)
whenR→0 and also whenr→`.

We exploit the fact that“P must be curl free, and impos
the so-called solvability condition“3“P50. It simplifies
the general form of the vector potential expansion given
Eq. ~7!. The solvability condition reveals that, without loss
generality, one can rewrite the vector potential as

A5H Q

2p
u1 (

nÞ0
AnS R

r D unu

exp~ inu!

1dF (
nÞ0

BnS R

r D unu 1

r 2
exp~ inu!G J ẑ, ~10!
02631
t,

r

nd

be

r
,

i-

d

n

replacing the array of coefficientsAmn with the simpler set of
An andBn . Observe that the vector potential~10! is simply a
superposition of a purely Newtonian term (}d0, coefficients
An) and a non-Newtonian contribution (}d1, coefficients
Bn),

A5AN1ANN . ~11!

The flow described byAN is irrotational, whileANN has a
curl.

Similarly, we express the pressure of the outer fluid a
sum of Newtonian and non-Newtonian pressures, and p
pose a general form for their Fourier expansion:

P5PN1PNN , ~12!

where

PN52
Q

2p
lnS r

RD1 (
nÞ0

pnS R

r D unu

exp~ inu! ~13!

and

PNN5dF2S Q

2p D 3 1

2r 2
1 (

nÞ0
qnS R

r D unu 1

r 2
exp~ inu!G .

~14!

The gradient of the complex pressure field~12! must sat-
isfy the non-Newtonian Darcy’s law given by Eq.~5!. By
inspecting ther andu components of Eq.~5!, and by exam-
ining the Newtonian and non-Newtonian components of
we can express the Fourier coefficients ofPN , PNN , and
ANN in terms of the Fourier coefficients ofAN ,

pn5sgn~n!~ iAn!, ~15!

qn52 iAnb~n!
n

unu S Q

2p D 2

1
Q

4p~ unu11!

3 (
mÞ0,mÞn

mAm~n2m!An2m k~n,m!, ~16!

Bn52Ana~n!S Q

2p D 2

1
Q

4p~ unu11!

3 (
mÞ0,mÞn

m~ iAm!~n2m!An2m h~n,m!, ~17!

where in order to keep the results in a compact form,
introduced the coefficients

a~n!5
unu~ unu21!

2~ unu11!
, ~18!

b~n!5
unu~ unu13!

2~ unu11!
, ~19!

h~n,m!5~ unu12!sgn~n2m!2
n

2
$32sgn@m~n2m!#%,

~20!

and
3-3
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CONSTANTIN, WIDOM, AND MIRANDA PHYSICAL REVIEW E 67, 026313 ~2003!
k~n,m!52nsgn~n2m!1
1

2
~ unu12!$32sgn@m~n2m!#%.

~21!

Note that sgn(n)51 if n.0 and sgn(n)521 if n,0.
Using Eqs.~15!–~17!, which are consistent with the solv

ability condition and Darcy’s law~5!, we can derive the gen
eral expression of the vector potential Fourier coefficients
terms of the perturbation amplitudes. To fulfill this goal, co
sider the kinematic boundary condition@3,4#

]R
]t

5F1

r

]R
]u

~2vu!1v r G
uR

, ~22!

which states that the normal components of each fluid’s
locity at the interface equals the velocity of the interfa
itself. By expanding Eq.~22! up to the second order inz and
up to the first order ind, we find the coefficient of the vecto
potential corresponding to thenth evolution mode,An

(k) , in
terms ofd and thekth order inz (k51,2),

iAn
(1)~ t !5FR

n
żn1

Ṙ

n
znG @11dṘ2a~n!#,

iAn
(2)~ t !5

Ṙ

R (
mÞ0,n

F umu
m

1dṘ2u~n,m!Gzmzn2m

1 (
mÞ0,n

F1

n
1

umu
m

1dṘ2v~n,m!G żmzn2m

2
dṘR

2~ unu11! (
mÞ0,n

h~n,m! żmżn2m

2
dṘ2

2~ unu11! (
mÞ0,n

h~n,m! zmżn2m , ~23!

where the overdot denotes total time derivative,Ṙ
5Q/(2pR) represents the unperturbed interface veloc
and the coefficients

u~n,m!5a~n!
umu
m

22
a~m!

m
2

h~n,m!

2~ unu11!
, ~24!

v~n,m!5a~n!S 1

n
1

umu
m D22

a~m!

m
2

h~n,m!

2~ unu11!
. ~25!

To conclude our derivation we need one more step. T
vector potential coefficients can be introduced into the pr
sure jump condition@Eq. ~6!# and using Darcy’s law@Eq. ~5!#
one can finally find the equation of motion for perturbati
amplitudeszn . We present the evolution of the perturbatio
amplitudes in terms ofd and thekth order in the perturbation
amplitudez,

żn5 żn
(1)1 żn

(2) , ~26!

where
02631
n
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żn
(1)5l~n!zn , ~27!

l~n!5
Ṙ

R
~ unu21!2

g

R3
unu~n221!1dṘ2

unu
R F Ṙ

unu21

unu11

2
2g

R2

unu~n221!

unu11 G ~28!

is the non-Newtonian linear growth rate first reported
Kondic et al. @11#, and

żn
(2)5 (

mÞn,0
@FN~n,m!1d FNN~n,m!# zmzn2m

1 (
mÞn,0

@GN~n,m!1d GNN~n,m!# żmzn2m

1d (
mÞn,0

HNN~n,m! zmżn2m

1 d (
mÞn,0

JNN~n,m! żmżn2m . ~29!

In Eq. ~29!, the coefficientsFN ,FNN ,GN ,GNN ,HNN , and
JNN represent the second-order Newtonian~N! and non-
Newtonian (NN) terms. Their detailed functional forms ar
presented in the Appendix. An important feature of t
second-order coefficients is that they present special re
tion symmetries

C~n,2m!5C~2n,m!,

C~2n,2m!5C~n,m!, ~30!

whereC5FN ,FNN ,GN ,GNN , HNN , andJNN , respectively.
Equation ~26! is the mode-coupling equation of the no
Newtonian Saffman-Taylor problem in radial geometry.
gives us the time evolution of the perturbation amplitud
zn , accurate to second order, in the weak shear limit. T
rest of the paper uses Eq.~26! to study the development o
interfacial instabilities, and to examine how the no
Newtonian parameterd affects pattern morphology.

III. DISCUSSION

In the next three sections, we use our mode-coupling
proach to investigate the interface evolution at first and s
ond order. To simplify our discussion it is convenient to r
write the net perturbation~2! in terms of cosine and sine
modes,

z~u,t !5z01 (
n51

`

@an~ t !cos~nu!1bn~ t !sin~nu!#, ~31!

where an5zn1z2n and bn5 i (zn2z2n) are real valued.
Without loss of generality, we may choose the phase of
fundamental mode so thatan.0 andbn50.
3-4
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A. First order

Although at the level of linear analysis we do not expe
to detect or rigorously predict important nonlinear effe
such as tip splitting and sidebranching, some useful inform
tion may still be extracted. A nice example of how pure
linear results can help to understand complicated morp
logical features appearing in non-Newtonian radial He
Shaw flows is found in Refs.@11,12#. By studying their linear
growth rate, Kondicet al. @11,12# found that shear thinning
decreases the wave number of maximal growth, increase
maximum growth rate, and tightens the band of unsta
modes. Based on this increased selectivity of waveleng
they postulated that shear thinning can lead to suppressio
tip splitting. Their speculations have not been further inv
tigated analytically, but instead have been supported by t
own intensive numerical simulations@12,13#.

Our first-order results, namely, our linear growth rate e
pression~28! agrees with the equivalent formula of Kond
et al. @11#, if we set their constantC equal toṘ2. We use
growth rate ~28! to gain insight into shear-thinning o
-thickening behavior. Figure 2 plotsl(n) as a function of
mode numbern for three different values of the non
Newtoniam parameter:~a! d50, ~b! d50.05, and~c! d5
20.05. By inspecting Fig. 2, we notice that, unlike th
shear-thinning case (d.0) discussed in Refs.@11,12#, shear
thickening (d,0) widens the band of unstable modes, a
decreases growth rate for the wave number of maxi
growth. So, by applying similar arguments as those used
Kondic et al. @11,12# for the weak shear-thinning case, w
postulate that shear thickening would lead toenhancedtip
splitting. Unfortunately, for the shear-thickening radial He
Shaw flow, both numerical simulations and experiments
not available in the literature to confirm this claim. O
course, it is also of interest to study such a possibility a
lytically. This is one of the topics we examine in Sec. III B

FIG. 2. Linear growth rate~28! as a function of mode numbern
for three different values of the non-Newtoniam parameter:d50
~black solid curve!, 10.05 ~black dashed curve!, 20.05 ~gray
dashed curve!. The injection rateQ52p cm2/s, R51 cm, andg
51/200 cm3/s. The units ofl(n) and d are s21 and (cm/s)22,
respectively.
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B. Second order

On the analytical side, one must go beyond linear analy
in order to investigate in more detail the main morphologi
features found in Hele-Shaw flows with both shear-thinn
and shear-thickening fluids. To this day, besides a few fi
order linear growth studies@11–13#, there are no other ana
lytical results concerning non-Newtonian fluid evolution
radial Hele-Shaw geometry. If on one hand the no
Newtonian problem is vastly richer, it is also true that it
much less amenable to analytic approach than its Newto
counterpart. Our mode-coupling approach intends to prov
a better and more complete analytical understanding of
complex non-Newtonian time evolution dynamics in He
Shaw cells.

1. Action of the parameterd on fingertip splitting

We use the mode-coupling equation~26! to investigate the
coupling of a small number of modes. At second order
most noteworthy effect refers to the action of the no
Newtonian parameterd on finger tip splitting. Tip splitting is
related to the influence of a fundamental moden on the
growth of its harmonic 2n @15#. For consistent second-orde
expressions, we replace the time derivative termsȧn and ḃn
by l(n)an and l(n)bn , respectively. Under these circum
stances the equation of motion for the cosine mode 2n is

ȧ2n5l~2n!a2n1
1

2
T~2n,n!an

2 , ~32!

where the function that multipliesan
2 , T(2n,n), is called the

tip-splitting function and its general expression is

T~n,m!5FN~n,m!1l~m!GN~n,m!1d @FNN~n,m!

1l~m! GNN~n,m!1l~n2m! HNN~n,m!

1l~m!l~n2m!JNN~n,m!#. ~33!

Equation ~32! shows that the presence of the fundamen
moden forces growth of the harmonic mode 2n. The func-
tion T(2n,n) acts like a driving force and its sign dictates
fingertip splitting is favored or not by the dynamics.
T(2n,n),0, a2n is driven negative, precisely the sign th
leads to fingertip widening and fingertip splitting.
T(2n,n).0 growth ofa2n.0 would be favored, leading to
outward-pointing fingertip narrowing.

To investigate the influence of the non-Newtonian para
eterd on the tip-splitting behavior at second order, we plot
Fig. 3 the behavior ofT(2n,n) as a function ofd, for a few
Fourier modes (n54,5,6). To simplify our analysis, we
adopt an instantaneous approach: we consider a particulṘ

and R combination, using the identityṘR5Q/2p, at the
onset of growth of mode 2n @using the conditionl(2n)
50] in the Newtonian limitd50, where we knowT(2n,n)
is negative@15#. We see from Fig. 3 that the curve for mod
n54 lies below the curves associated withn55,6. This is
an expected behavior since smaller values ofn would mean
more room for the existing fingers to split. We also obse
that the curves associated with smallern show a stronger an
3-5
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CONSTANTIN, WIDOM, AND MIRANDA PHYSICAL REVIEW E 67, 026313 ~2003!
gular inclination with respect to the horizontald axis. There-
fore, lower Fourier modes would be more sensitive to va
tions in d.

Further inspection of Fig. 3 reveals that, ford.0,
T(2n,n) becomes less negative asd increases, meaning tha
the interface has less tendency toward tip splitting. In c
trast, ford,0 we observe thatT(2n,n) becomes more nega
tive as the magnitude ofd,0 increases, indicating an en
hanced tendency of the fingers to split at their tips.
conclude that tip splitting is suppressed for shear-thinn
fluids, and enhanced for shear-thickening ones. This fac
more clearly illustrated in Fig. 4. In Fig. 4, we plot the fluid
fluid interface for a certain time (t530 s), considering the
interaction of two cosine modes~a fundamentaln54 and its
harmonic 2n58), for three diferrent values ofd: ~a! d50

FIG. 3. Variation of T(2n,n) as a function of the non-
Newtonian parameterd, for three different Fourier modes (n
54,5,6). The injection rateQ52p cm2/s and g51/100 cm3/s.
The units ofT(2n,n) and d are (cm/s)21 and (cm/s)22, respec-
tively.

FIG. 4. Snapshot of the fluid-fluid interface (t530 s) for
the interaction of two cosine modesn54 and 2n58. Three
values of the non-Newtonian parameter are considered:d50 ~black
solid curve!, d510.01 (cm/s)22 ~black dashed curve!, and
d520.01 (cm/s)22 ~gray dashed curve!. Other physical param-
eters arean(0)50.001 cm,R050.3 cm, g50.025 cm3/s, and Q
53p cm2/s. Splitting is favored for shear-thickening fluids~gray
dashed curve!.
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~solid curve!, ~b! d.0 ~black dashed curve!, and ~c! d,0
~gray dashed curve!. From Fig. 4 it is evident that there is
stronger splitting in the shear thickening case.

These second-order effects regarding tip splitting are c
sistent with the first-order effects described in Sec. III
With respect to the shear-thinning behavior, our analyti
results agree with numerical simulations@12,13# and experi-
ments@4,6# of fully nonlinear stages of interface evolution
In addition, we detect favored tip splitting in the shea
thickening case, a relevant nonlinear behavior not previou
reported in the literature. We have also verified that, fo
given moden, smaller values of the surface tension para
eterg lead to enhancement~suppression! of splitting events
for d,0 (d.0).

A physical mechanism that seems to be at work in she
thinning case has been proposed in Refs.@11–13#: viscosity
is lowered in high-shear regions, which are in front of t
fingers. Hence the tip of a finger experiences less resista
than the part of the interface near the tip. This suggests
tip splitting would be suppressed if the fluid shear thins. O
second-order mode-coupling results indicate that a sim
mechanism is at work in the shear-thickening case: the re
tance would be increased at the finger tips, suggesting
tip splitting would be increased.

2. Action of the parameterd on sidebranching

Another relevant non-Newtonian effect that can be st
ied at second order refers to the sidebranching phenome
In the framework of a mode-coupling theory, sidebranch
requires the presence of mode 3n. If the harmonic modea3n
is positive and sufficiently large, it can produce interfac
lobes branching out sidewards, which we interpret as s
branching.

Consider the influence of the fundamental moden, and its
harmonic 2n, on the growth of mode 3n. The equation of
motion for the cosine 3n mode is

ȧ3n5l~3n!a3n1
1

2
S~3n!ana2n , ~34!

where the sidebranching functionS(3n)5@T(3n,n)
1T(3n,2n)# can be easily obtained from Eq.~33!. By ana-
lyzing Eq. ~34!, we observe that mode 3n can be spontane
ously generated due to the driving term proportional
ana2n , such that it enters through the dynamics even whe
is missing from the initial conditions. The existence a
phase of mode 3n depends on the interplay of the modesn
and 2n. Sidebranching would be favored ifa3n.0.

To study the growth of mode 3n as the non-Newtonian
parameterd is varied, we plotS(3n) as a function ofd in
Fig. 5. We consider a particularṘ and R combination that
corresponds to the onset of growth of mode 3n @i.e., obeying
the conditionl(3n)50] in the Newtonian limitd50. From
Fig. 5, one can verify that in the weak shear limit we co
sider in this work,S(3n) is negative for all values ofd. As
shown in Sec. III B 1, starting with a fundamental modean ,
the harmonic modea2n is driven negative. Hence, the prod
uct S(3n)ana2n in Eq. ~34! is positive, drivinga3n.0.
3-6
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Whether sidebranching actually occurs depends on
magnitude ofa3n . Indeed, our discussion shows the pre
ence ofa3n.0 even in the case of Newtonian fluids, whe
sidebranching does not occur. Why does sidebranching o
for shear-thinning fluids? We speculate that its origin may
in the cubic form of our modified Darcy’s law, Eq.~5!, which
will add a term of the formdan

3 to ȧ3n . Unfortunately, we
have not calculated this term since we stopped our deriva
at second order. Third-order calculations for non-Newton
Hele-Shaw flows lead to several new and complex mo
coupling terms, whose analysis and interpretation are no
all obvious, and go beyond the scope of our current wor

Furthermore, there is a delicate interplay of mode 3n and
mode 2n, described by the evolution equation~34! and a
similar expression for the growth of mode 2n,

ȧ2n5l~2n!a2n1
1

2
@T~2n,n!an

21S~2n!ana3n#, ~35!

where S(2n)5@T(2n,2n)1T(2n,3n)#.0. Hence, side-
branching via a positivea3n will tend to drive a2n positive
~or at least less negative!, inhibiting tip splitting but also
reducing the growth rate ofa3n itself.

C. Rectangular geometry limit

It is interesting to study how the main interfacial featur
examined in the radial geometry behave if we consider
flow of non-Newtonian fluids inrectangular Hele-Shaw
cells. A mode-coupling equation describing the system
be obtained if we take the ‘‘rectangular geometry limit’’:R
→` and Q→`, such thatQ/(2pR)[v` and n/R[k re-
main constant, wherev` is the flow velocity at infinity andk
denotes the wave number of the disturbance. In this limit
interface evolution reverts to the evolution of the rectangu
flow geometry, with linear growth rate given by

FIG. 5. Variation of the sidebranching functionS(3n)
5T(3n,n)1T(3n,2n) with the non-Newtonian parameterd, for
modes n54,5,6. The injection rateQ52p cm2/s and g
51/100 cm3/s. The units of S(3n) and d are (cm/s)21 and
(cm/s)22, respectively.
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l~k!5uku@v`~11dv`
2 !2guku2~112dv`

2 !#. ~36!

In addition, the only nonzero second-order mode-coupl
terms are

GN~k,k8!5uku@12sgn~kk8!#, ~37!

GNN~k,k8!52ukuv`
2 @12sgn~kk8!#, ~38!

and

JNN~k,k8!5
v`

2
$32sgn@k8~k2k8!#12 sgn@k~k2k8!#%.

~39!

Note that all rectangular limit expressions~36!–~39! are time
independent, and preserve the reflection symmetries sh
in Eq. ~30!. Based on these findings, and using Eq.~26! we
obtain a more compact mode-coupling equation for n
Newtonian flow in rectangular Hele-Shaw cells:

żk5l~k! zk1 (
k8Þk,0

@GN~k,k8!1d GNN~k,k8!#żk8zk2k8

1d (
k8Þk,0

JNN~k,k8!żk8żk2k8 . ~40!

The rectangular mode-coupling equation~40! is useful to
study the influence of weak shear-effects on the developm
of the fluid-fluid interface in rectangular cells. First, we e
amine fingertip-splitting related issues~finger narrowing or
widening!. As discussed in Sec. III B 1, we analyze the i
fluence of the fundamentalk on the growth of its harmonic
2k. The equation of motion for the cosine mode 2k is

ȧ2k5l~2k!a2k1
1

2
T~2k,k! ak

2 , ~41!

where

T~2k,k!5d@2k2v`~v`2g k2!2#. ~42!

Note that the driving force termT(2k,k) vanishes in the
Newtonian limitd50. This agrees with the results obtaine
in Ref. @14# for Newtonian rectangular flow. Notice furthe
that for the non-Newtonian case (dÞ0) the harmonic mode
2k grows spontaneously even if missing from the initial co
ditions. The selected sign ofa2k is given by the sign of
T(2k,k) and thus is dictated byd: if d.0 (d,0), T(2k,k)
is positive~negative!, and hencea2k.0 (a2k,0).

Considering the cased.0, this means that the finger
become narrower as the shear-thinning behavior beco
more pronounced. Moreover, by inspecting Eq.~42! we ob-
serve that the width of the fingertips decreases for incre
ingly larger values of the flow velocityv` . Of course, these
effects are minimized for larger values of the surface tens
parameterg. All these results are in agreement with rece
experimental@16# and theoretical investigations@17,18# for
weak shear-thinning flows in rectangular geometry, in wh
shear thinning narrows the width of steady state fingers.
3-7
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If we takek5k* 'Av`/3g as the fastest growing mode
thenl(2k),0 so that the exponential growth ofa2k is pre-
vented. Unlike the case of radial flow where any moden
eventually goes unstable for sufficiently largeR, the growth
ratesl(k) in the rectangular geometry are time independe
Instead of exponential growth ofa2k , we instead expect its
amplitude to saturate at the valueT(2k,k)ak

2/@22l(2k)#

obtained by settingȧ2k50 in Eq. ~41!. Alternatively, one
could specially prepare an initial condition with an initi
perturbation of wave vectork sufficiently small so that 2k
still lies within the band of unstable modes~up to about
Av` /g), in which case mode 2k will be spontaneously gen
erated and able to grow to a considerable magnitude.

For completeness, we also discuss the shear-thicke
case: ford,0 the functionT(2k,k) is negative, favoring
fingertip widening. Even though this shear-thickening beh
ior has not been studied experimentally, the broadening
the fingers in shear-thickening flow in rectangular cells h
been theoretically predicted by numerical simulations@18#.
Our analytical results reinforce the correctness of such
merical predictions.

Finally, we briefly discuss sidebranching behavior in re
tangular Hele-Shaw cells. We consider the influence
modesk and 2k on the evolution of mode 3k. In this case,
the relevant equation of motion has the form

ȧ3k5l~3k!a3k1
1

2
S~3k! aka2k , ~43!

where, as it was in the radial flow case, the coefficientS(3k)
is the sum ofT(3k,k) andT(3k,2k),

S~3k!5d@8k2v`~v`2g k2!~v`24gk2!#. ~44!

The favored sign ofa3k depends on the sign of the produ
aka2k and also on the sign ofS(3k). If d is positive~shear
thinning!, thenS(3k) is negative in the band of wave vec
tors,

Av`/4g,k,Av` /g, ~45!

and positive outside this band. As we saw previously in
case of mode 2k, if the fundamental mode is taken as th
fastest growing modek5k* , then exponential growth of the
harmonic 3k is inhibited becausel(3k),0. Instead it will
saturate at a magnitude ofS(3k)aka2k /@22l(3k)#.

However, for a specially prepared initial condition pe
turbed at wave vectork'k* /3, the harmonics 2k and 3k
will both be able to grow. By Eq.~41! a positive harmonic
modea2k.0 will appear spontaneously. Then, by Eq.~43!,
modesak anda2k will conspire to create modea3k . Because
k'k* /3 lies outsidethe wave vector band~45!, the value of
S(3k) is positive. Hence the modea3k is driven positive, the
sign needed to create side branches. While this conclusio
only tentative ~due to our neglect of the complete set
third-order terms!, it would be interesting to test via numer
cal simulation or experiment.
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IV. CONCLUDING REMARKS

Visually striking patterns arise when a less viscous Ne
tonian fluid displaces a more viscous non-Newtonian fluid
the confined geometry of a Hele-Shaw cell. These comp
patterned structures are the result of fingertip splitting a
dendritic interfacial instabilities. Due to the complicated d
namics of the system, and also from the limitations impos
by purely linear analysis, the majority of the theoretical stu
ies in this area of research rely heavily on sophisticated
merical methods. In this work, we developed an alternat
theoretical approach to the problem, which allowed us
address important nonlinear issues analytically. A key po
in our derivation was the introduction of velocity vector p
tential ~as opposed to scalar potential!, which was demanded
by the non-Newtonian fluid flow.

We started our investigation by analyzing the role of flu
viscosity anisotropy on the development of the Saffma
Taylor instability in radial Hele-Shaw cells. To approach t
problem analytically we considered the weak shear limit, a
focused on the onset of nonlinear effects. In order to exam
the influence of shear thinning and shear thickening on
shape of the emerging patterns, we derived a mode-coup
equation which is ideally suited to describe the weakly no
linear interface evolution. Our analytical results show th
fingertip splitting is enhanced~diminished! in the case of
shear-thickening~-thinning! fluids. We applied the rectangu
lar geometry limit to our radial mode-coupling equations
motion, and also studied fingertip and sidebranching beh
iors in rectangular cells. Our main findings predict finger
widening ~narrowing! for shear-thickening~thinning! fluids.

In neither the radial nor the rectangular geometry lim
were we able to show the spontaneous appearance of
branching, except for some specially prepared initial con
tions in rectangular geometry. We speculate that extend
the current approach to third order could shed more light
this problem.

In summary, our analytical mode-coupling approach d
tects and predicts several features of the patterns forme
non-Newtonian Hele-Shaw flows in both radial and recta
gular geometries. Furthermore, it predicts some behav
not yet investigated in the literature, such as the evolut
mechanisms involving tendency towards advanced finge
splitting and reduction of sidebranching for shear-thicken
fluids. We hope the main results presented in this paper
prompt further theoretical and experimental work on no
Newtonian Hele-Shaw flows, especially in the area of ea
stage transients in rectangular geometry where our the
makes specific predictions that have not been subject to
perimental or numerical check.
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APPENDIX: SECOND-ORDER MODE-COUPLING TERMS

This appendix presents the expressions for the sec
order Newtonian (N), and non-Newtonian (NN) mode-
coupling coefficients which appear in Eq.~29!:

FN~n,m!5
unu
R H Ṙ

R F1

2
2sgn~nm!G2

g

R3 S 12
nm

2
2

3m2

2 D J ,

~A1!

FNN~n,m!5
unu
R

Ṙ2H Ṙ

R F2a~m!

m

unu
n

2
2b~n!

unu
1

f ~n,m!

2~ unu11!G
2

g

R3

2unu
~ unu11! S 12

nm

2
2

3m2

2 D J , ~A2!

GN~n,m!5
unu
R F12sgn~nm!2

1

unuG , ~A3!
. A

C

d,
-

ys

v
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GNN~n,m!5

unu
R

Ṙ2F2a~m!

m

unu
n

2
2b~n!

unu
1

f ~n,m!

2~ unu11!G ,
~A4!

HNN~n,m!5
unu

2~ unu11!

Ṙ2

R
f ~n,m!, ~A5!

and

JNN~n,m!5
unu

2~ unu11!
Ṙ f ~n,m!, ~A6!

where

f ~n,m!5F unu
n

h~n,m!1k~n,m!G . ~A7!
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