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The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid
by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and
examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing
the early nonlinear evolution of the interface modes is derived in detail. Owing to vorticity arising from our
modified Darcy’s law, we introduce a vector potential for the velocity in contrast to the conventional scalar
potential. Our analytical results address how mode-coupling dynamics relates to tip splitting and sidebranching
in both shear-thinning and shear-thickening cases. The development of non-Newtonian interfacial patterns in
rectangular Hele-Shaw cells is also analyzed.
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[. INTRODUCTION searchers is that, as opposed to the Newtonian case, the pres-
sure field is no longer Laplacian. This implies a serious the-
The celebrated Saffman-Taylor instabilfty] arises when oretical challenge, sinc priori one would not be allowed to

a less viscous fluid pushes a more viscous one in the thin gagirectly apply a Darcy’s law approach to tackle the problem.
of a Hele-Shaw cell. The less viscous fluid can be either The instability of radial Hele-Shaw flows involving non-
injected at an end of a channel-shaped @elttangular ge- Newtonian fluids has been studied theoretically by Sader
ometry [1], or from the center of the celtadial geometry et al.[9]. They considered power law fluids, and performed a
[2]. In both geometries the interface separating the fluidsdinear stability analysis without making use of Darcy’s law.
may deform, leading to the formation of fingerlike patterns,Essentially, they showed that decreasing the power law index
commonly known as viscous fingers. During the past fourdramatically increases the growth rates leading to a more
decadeS, the ViSCOUS ﬁngering InStabI|Ity haS been exter]'apid deve'opment of the fingering patterns_ A Darcy’s law-
sively studied, both thepret?cal[;B] and experimentallﬂ]. type approach has been proposed by Bonn and collaborators
Much of the research in this area has examined the case ). Bonnet al. suggested a modified Darcy’s law including
which the fluids involved are Newtonian. For Newtonian flu- 5 chear rate dependent viscosity, and showed that, within

ids, it is observed that the fingers grow and compete dynamigoir apnroach, the pressure field remains Laplacian. In a

cally, resulting in a single stable finger in the rectangular§ieries of interesting papers Kondital. [11,17, and subse-

geometry, and_ in patterned structures'rr_]arkedly charactgnzg uently Fastet al. [13], extended ideas of Ref10] and de-
by the spreading, and subsequent splitting of the fingertips i . X . -
rived a generalized Darcy’s law from first principles, where

the radial setup. : . :
e radial setup viscosity depends upon the squared pressure gradient. It

A whole different class of interfacial patterns arise when hat the D s law f : d by B
the Saffman-Taylor instability is studied by taking the dis- U™MS out that the Darcy's law formula proposed by Bonn

placed fluid as non-Newtoniapd,5]. In contrast to most et ql. [10] follow_s from the more_b_asic versiqn rig_orously
Newtonian fluids, non-Newtonian fluids differ widely in their derived by Kondicet al.[11,12). Efficient numerical simula-
hydrodynamic properties, with different fluids exhibiting a tions performed in Ref412,13 have shown that shear thin-
range of effects from elasticity and plasticity to shear thin-Ning can suppress tip splitting and leads to the formation of
ning and shear thickening. Experiments using non-dendritic structures, presenting a clear sidebranching behav-
Newtonian fluids in radial and rectangular Hele-Shaw cellgor.
have revealed a wide variety of new patterns, showing snow- Theoretical studies of the fully nonlinear stages of Hele-
flakelike shapeg$4,6] and fracturelike structuref7,8]. In-  Shaw flow with non-Newtonian fluids rely heavily on inten-
stead of the traditional, tip-splitting-dominated Newtoniansive numerical simulation§l2,13. On the analytical side,
patterns, these experimerits6—8 exhibit dendritic fingers the structure of the fingering dynamics in such complex flu-
and sidebranching. This morphological diversity and rich dy-ids is largely restricted to linear stability investigations
namical behavior motivated a number of theoretical studie§9,11]. Much less attention has been paid to the analytical
of the problem[9-13]. One major difficulty faced by re- investigation of the dynamics that bridges thaial (purely
linean andfinal (fully nonlinean time regimes. In addition,
theoretical as well as experimental analyses of flow of shear-
*Present address: Department of Physics, Theoretical Condensthickening fluids in Hele-Shaw cells still need to be ad-
Matter Center, University of Maryland, College Park, MD 20742. dressed. In this paper, we carry out the analytical weakly

1063-651X/2003/6(2)/0263139)/$20.00 67 026313-1 ©2003 The American Physical Society



CONSTANTIN, WIDOM, AND MIRANDA PHYSICAL REVIEW E 67, 026313(2003

Newtonian YO geometry. The surface tension between the fluids is denoted
Juid by o. The Newtonian fluid is injected at a constant areal flow
rate Q at the center of the cell.
The initial circular fluid-fluid interface is slightly per-
turbed, R=R(t)+{(0,t) ({/R<1), where the time-
dependent unperturbed radius is given by

non—Newtonian R(t)= 1/ R2+ g D
Sfluid (U

FIG. 1. Schematic configuration of radial flow in a Hele-Shaw Ry being the unperturbed radius tat 0. The interface per-
cell. The inner fluid is Newtonian and has negligible viscosity. Theturbation is written in the form of a Fourier expansion
outer fluid is non-Newtonian. All physical parameters are defined in
the text. e

{0,0= 2 &(exp(ino), @

nonlinear analysis for thentermediatestages of evolution,

and examindooth shear—thinning and shear—_thickening Caseshere {n(t)=(1/2w)f§”§(0,t)exp(—in0) dd denotes the
We adapt a Weakly nonlinear approach originally develoF’eQ:omplex Fourier mode amplitudes ané-0, +1, =2, ...

to study Newtonian Hele-Shaw flowd4,15, to the non- 5 e discrete polar wave number. In our Fourier expansion
Newtonian situation. We focus on the onset of 'Fhe nonllne_afz), we include then=0 mode to keep the area of the per-
effects, and tyto undergtand how mode-couplmg dynamicg, heq shape independent of the perturbatjorMass con-
leads to basic morphological features and behaviors observ rvation imposes that the zeroth mode is written in terms of

in non-Newtonian Hele-Shaw flows. _ 2
. ; . the other modes a& = —(1/2R) =, .0/ n(1)|°.
The paper is organized as follows: Section Il formulates” o \ajevant hydrodynamic ec;ﬁgtionn for Newtonian Hele-
our theoretical approach. We perform a Fourier decompos;ShaW flows, Darcy’s lavi1,3], states that the gradient of the

tion of the interface shape, and from an alternative form ofy oq e is proportional to the fluid velocity, and oriented in
Darcy’s law study the influence of weak shear effects on th he opposite direction with respect to the fluid flow

development of interfacial patterns. In contrast to the analy-

sis for Newtonian fluids, conventionally based on a scalar 12
velocity potential, we employ a vector velocity potential ca- Vp=-— s v, 3
pable of describing vorticity arising from the non-Newtonian b?

fluid flow. Coupled, nonlinear, ordinary differential equations ]
governing the time evolution of Fourier amplitudes are de-Wwherev=v(r,d) andp=p(r,6) are, respectively, the gap-
rived in detail. Section Il discusses both linear and weaklyaveraged velocity and pressure in the fluid. The viscosity of
nonlinear dynamics. It concentrates on the effect of sheaihe fluid is represented by.. To model non-Newtonian
thinning and shear thickening on fingertip splitting and side-Hele-Shaw flows, we use a suitable form of the Darcy’s law
branching. Section 1l A briefly discusses our linear stabilityin the weak shear-thinning or -thickening limit. We follow
results. Linear results are useful and instructive, but do noBonnet al.[10] and consider their shear rate dependent vis-
allow accurate predictions of important interfacial featuresCosity in the weak non-Newtonian limit(r)*<1,

In Sec. lll B, we show that some of these features can indeed 2 5 2

be predicted and more quantitatively explained by our ana- w09 =pe[1=(1-a)w 7], )
lytical mode-coupling approach. At second order we find a

mechanism for fingertip splitting in non-Newtonian Hele- \;V:teerries(tl;cmrve/Ithitgr? tsi;zagfr?g ?JJ\I/(L ;rfdiniztzsctgr?sf:r?tr-
Shaw flow: it is suppresse@favored for shear-thinning ’ '

(-thickening fluids. Our results indicate the absence of Side_zero-shear viscosity. The parametermeasures the shear

- g dencex=1 corresponds to the Newtonian fluids, and
branching in the weak shear limit and early flow stages, bugepen . o . : '
suggest that it could be enhancéhibited for shear- =1 (¢>1) gives the shear-thinningthickening case.

thinning (-thickening fluids. Section Il C discusses mode By substituing Eq(4) into Eq. (3), we obtain an alterna-

coupling in rectangular flow geometry. Our chief conclusionst V& form Of. Darcy's law ideally suited to describe weak
non-Newtonian effects,

are summarized in Sec. IV.
VP=-v + &vov. (5)
Il. THE MODE-COUPLING DIFFERENTIAL EQUATION Here P=[b%/(12u0)] p represents a generalized pressure
The Hele-Shaw cellFig. 1) consists of two parallel plates field, and §=(1—«a)(7/b)? is a small parameter that ex-
separated by a small distance. The cell thickreissconsid-  presses the non-Newtonian nature of the displaced flgid:
ered to be much smaller than any other length scale in the0 corresponds to the Newtonian case, wiite0 (6<0)
problem, so that the system is essentially two dimensionaldescribes the shear-thinnir(gthickening case. Taking the
Consider the displacement of a viscous, non-Newtonian fluidlivergence of Eq.(5) and using incompressibility ¥ - v
by a Newtonian fluid of negligible viscosity in such confined =0) the pressure is seen to be anharmgnignvanishing
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Laplacian. Our subsequent analysis incorporates this effectreplacing the array of coefficienss,,, with the simpler set of
in contrast to the treatment in R¢.0]. Indeed, an alternate A, andB,,. Observe that the vector potent{dl) is simply a
route to our Eq(5) is to start with viscosity depending on the superposition of a purely Newtonian term §°, coefficients
square of the pressure gradiefas in Kondicet al. [11]),  A,) and a non-Newtonian contributiorec@®, coefficients
then approximate the pressure gradient with the velocity foB,),
small 4.

Our pertubative approach keeps terms up to the second A=AnTANN- 11

order inZ and up to the first order id. Considering the fact : - . .
that the viscosity of the Newtonian fluid is negligible, the ISS flow described byAy is irrotational, whileAyy has a

generalized pressure jump condition at the interface can be Similarly, we express the pressure of the outer fluid as a

written as{3] sum of Newtonian and non-Newtonian pressures, and pro-
pose a general form for their Fourier expansion:

Plr==7v x|z, (6)
P=Pn+Pnns (12
where y=b2%a/(12u,) and k| is the curvature in the direc-
tion parallel to the plates. where
The weakly nonlinear approach to radial, Newtonian Q In|
Hele-Shaw flow developed in RdfL5] related the fluid ve- Pn=—5_ ( ) 2 pn( ) exping) (13

locity to a scalar velocity potentialv=—V ¢, this replace-

ment made possible by the irrotational nature of the flow forand
Newtonian fluids. For non-Newtonian fluids, in contrast,

flows governed by the modified Darcy’s laii) exhibit vor-

ticity. Hence, we perform our calculations usingvactor Pyn=296
potential v=V X A. The most general form of the vector

potential can be written as

_ E)gi (_)'nli -
(277 5 2 ; exp(iné) |.

2r n#0

(14)

The gradient of the complex pressure fi€l®) must sat-
7) isfy the non-Newtonian Darcy’s law given by E). By
inspecting the and # components of Eq.5), and by exam-
ining the Newtonian and non-Newtonian components of it,
whereA,,, are the Fourier coefficients of the velocity vector we can express the Fourier coefficients Ry, Pyy, and

potential and? is the outward unit normal to the upper cell Ann in terms of the Fourier coefficients @y,

g0+ > Amn($) exp(in6) |z,

2m m,n#0

Efgeérlhe radial and polar components of the fluids veloci- D, =Sgrin)(iA,) 15
n(Q\? Q
m Qn:_iAnB(n)_(_) t
vr=£+ > inAn, —m+1>exp(in0) (8) Inf\2m] = 4m(n|+1)
r

27 mn#o

X 2 mAn—mA,_, k(nm), (16

and m#0,m#n

Q)2 Q
Bn= ‘A““(”)(E) I

m,n#0

ve= > mAmn( R )exmnm 9

X M(iAL)(N—m)A,_, h(n,m), (1
Note that the vector potential reduces to the unperturbed m#OZmin (A JAn-m h(n.m), (17

steady flow with a circular interfacev(=Q/2#r, v,=0)
whenR—0 and also whem— .
We exploit the fact thaV P must be curl free, and impose

where in order to keep the results in a compact form, we
introduced the coefficients

the so-called solvability conditioW X VP=0. It simplifies In|(|n]—
the general form of the vector potential expansion given in a(n)= 20+ 1) (18
Eq. (7). The solvability condition reveals that, without loss of
generality, one can rewrite the vector potential as In|(|n|+3)
B(N)= 17 (19
E ( )nl 2(|n|+1)
6+ A exp(iné) n
n h(n,m)=(|n[+2)sgr(n—m)— 5{3—sgrim(n—m)]},
2
Inl 1 (20)
+8 > Bn<—> —exp(mﬁ)“ (10)
n#0 r and
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(1) —
k(n,m)=—nsgr(n—m)+%(|n|+2){3—sgr{m(n—m)]}. & =M, @7
(2D R y In|[ . nj-1
. . A== (In[-1)—=n|(n*~1)+ 6R?—=| R
Note that sgnf)=1 if n>0 and sgnf)=—1 if n<0. R R® R| In[+1
Using Egs.(15—(17), which are consistent with the solv-
ability condition and Darcy’s law5), we can derive the gen- B 2y |n|(n*-1) o8
eral expression of the vector potential Fourier coefficients in ? In|+1 (28

terms of the perturbation amplitudes. To fulfill this goal, con-

sider the kinematic boundary conditi¢8,4] is the non-Newtonian linear growth rate first reported by

Kondic et al.[11], and
. (22

e (9= 3 [Fu(nm)+ 8 Fyn(m)] Lol
which states that the normal components of each fluid’s ve- '
locity at the interface equals the velocity of the interface :
itself. By expanding Eq(22) up to the second order inand +m;1,0 [Gn(mm)+ 6 Gun(nM ] Lndn-m
up to the first order ird, we find the coefficient of the vector
potential corresponding to theth evolution mode A , in +s Honm) £
terms of 8 and thekth order inZ (k=1,2), m;n,o NN Ll

(—vg)tu,

IR _[1R
gt |r a0

iAﬁ”UF[;Zﬁ;én [1+5R2a(n)], + 5m;1,OJNN(n’m) Zm-gn—m' (29

In Eq. (29), the coefficientsFy,Fyn,Gn,Gnn,Hnn, and

iAEf’(t)zE > m+5h2u(n,m) Lolnem Jun represent the second-order Newtoni@d) and non-
Rmzon [ M Newtonian (NN) terms. Their detailed functional forms are
1 |m| presented in the Appendix. An important feature of the
+ > | =+ —+R%(n,m) |{mlnem second-order coefficients is that they present special reflec-
m=0n m tion symmetries
SRR w c(n,—m)=Cc(—n,m)
- h n’m B 1 ) 3
TESTIRMUULLEC
: C(—=n,—m)=C(n,m), (30
SR? S :
~2(In[+1) wSHn (M) Lmdn-m, (23 whereC=Fy,Fnyn,Gn.Gnns Hun, andJyy, respectively.

Equation (26) is the mode-coupling equation of the non-
where the overdot denotes total time derivative, ~Newtonian Saffman-Taylor problem in radial geometry. It
—Q/(27R) represents the unperturbed interface velocity,dives us the time evolution of the perturbation amplitudes
and the coefficients {n, accurate to second order, in the weak shear limit. The

rest of the paper uses E@®6) to study the development of

Im| _a(m)  h(n,m) interfacial instabilites, and to examine how the non-
u(n,m)=a(n)——=—-2——- LEE) (24 Newtonian parametes affects pattern morphology.

1 |m| a(m)  h(n,m) 1l. DISCUSSION
v(nnmy=a(n)| —+—|— — . (25
n.m m  2(|n[+1) In the next three sections, we use our mode-coupling ap-

L roach to investigate the interface evolution at first and sec-
To conclude our d.e.rlvat|on we nt_aed one more step. Th‘gnd order. To simplify our discussion it is convenient to re-
vector potential coefficients can be introduced into the Presy rite the net perturbatiori2) in terms of cosine and sine
sure jump conditiofEq. (6)] and using Darcy’s laWEqg. (5)] modes
one can finally find the equation of motion for perturbation '
amplitudes,. We present the evolution of the perturbation

amplitudes in terms of and thekth order in the perturbation L0,0)=C0+ 2 [a(t)cognd)+b,(t)sin(nd)], (31)
amplitude(, n=1
L=t +2), (26) Wwherea,={,+{_, and b,=i({,—{_,) are real valued.
Without loss of generality, we may choose the phase of the
where fundamental mode so that,>0 andb,=0.
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5 B. Second order

On the analytical side, one must go beyond linear analysis
in order to investigate in more detail the main morphological
features found in Hele-Shaw flows with both shear-thinning
and shear-thickening fluids. To this day, besides a few first-
order linear growth studigsl1-13, there are no other ana-
lytical results concerning non-Newtonian fluid evolution in
radial Hele-Shaw geometry. If on one hand the non-
Newtonian problem is vastly richer, it is also true that it is
much less amenable to analytic approach than its Newtonian
counterpart. Our mode-coupling approach intends to provide
a better and more complete analytical understanding of the
complex non-Newtonian time evolution dynamics in Hele-
Shaw cells.

1. Action of the parameters on fingertip splitting

FIG. 2. !_inear growth rat€28) as a function_ of mode number We use the mode-coupling equati®6) to investigate the
for three o_hfferent values of the non-Newtoniam paramefer:0 coupling of a small number of modes. At second order the
(black solid curvg, +0.05 (black dashed curve —0.05 (gray  mgst noteworthy effect refers to the action of the non-
dashed curve The Injection rateQ=2m szls’f:l cm, and;’ Newtonian parametef on finger tip splitting. Tip splitting is
;:/i%(;vcerﬁ/s. The units ofA(n) and & are s and (cm/s)™, related to the influence of a fundamental maden the

P y- growth of its harmonic 8 [15]. For consistent second-order

expressions, we replace the time derivative teapandb,,

by N(n)a, and\(n)b,, respectively. Under these circum-
Although at the level of linear analysis we do not expectstances the equation of motion for the cosine modds?

to detect or rigorously predict important nonlinear effects

;uch as tip ;plitting and sidebranching, some useful informa- é2n=)\(2n)a2n+3 T(Zn,n)aﬁ, (32)

tion may still be extracted. A nice example of how purely 2

linear results can help to understand complicated morpho- ) o )

logical features appearing in non-Newtonian radial Hele\Where the function that multiplies;, , T(2n,n), is called the

Shaw flows is found in Ref§11,12. By studying their linear  tip-splitting function and its general expression is

growth rate, Kondicet al. [11,12 found that shear thinning

decreases the wave number of maximal growth, increases the

A. First order

T(n,m)=Fyn(n,m)+X(m)Gy(n,m)+ & [Fyn(n,m)

maximum growth rate, and tightens the band of unstable +A(mM) Gyn(n,m)+A(n—m) Hyn(n,m)
modes. Based on this increased selectivity of wavelengths,
they postulated that shear thinning can lead to suppression of FNMA(N—m)Iyn(n,m)]. (33

tip splitting. Their speculations have not been further inves- )

tigated analytically, but instead have been supported by theffduation(32) shows that the presence of the fundamental

own intensive numerical simulatiofi$2,13. moden forces growth of the harmonic moden2The func-
Our first-order results, namely, our linear growth rate ex-tion T(2n,n) acts like a driving force and its sign dictates if

pression(28) agrees with the equivalent formula of Kondic fingertip splitting is favored or not by the dynamics. If

et al. [11], if we set their constan€ equal toR2. We use T(2n,n)<0, a,, is driven negative, precisely the sign that

L . Lo leads to fingertip widening and fingertip splitting. If
growth rate (28) to gain insight into shear-thinning or .
-thickening behavior. Figure 2 plots(n) as a function of T(2n,n)>0 growth ofa,,>0 would be favored, leading to

mode numbern for three different values of the non- outwa_rd-pOI_ntlng flng_ertlp narrowing. .
Newtoniam parameteia) 5=0, (b) 6=0.05, and(c) 5= To investigate the influence of the non-Newtonian param-
~0.05. By inspecting Fig 2’ we notice ihat unlike the eter § on the tip-splitting behavior at second order, we plot in

shear-thinning cases¢0) discussed in Ref$11,12, shear Fig. 3 the behawo_r of(2n,n) as a furjctlon 0, for a}few
thickening (6<0) widens the band of unstable modes, andFouner modes 1=4,5,6). To simplify our_ analysis, e
decreases growth rate for the wave number of maximaRdopt an instantaneous approach: we consider a partigular
growth. So, by applying similar arguments as those used bgnd R combination, using the identitRR=Q/27, at the
Kondic et al. [11,12] for the weak shear-thinning case, we onset of growth of mode 2 [using the condition\(2n)
postulate that shear thickening would leadetathancedip =0] in the Newtonian limité6=0, where we knowl (2n,n)
splitting. Unfortunately, for the shear-thickening radial Hele-is negative[15]. We see from Fig. 3 that the curve for mode
Shaw flow, both numerical simulations and experiments are@=4 lies below the curves associated witk-5,6. This is
not available in the literature to confirm this claim. Of an expected behavior since smaller values @fould mean
course, it is also of interest to study such a possibility anamore room for the existing fingers to split. We also observe
lytically. This is one of the topics we examine in Sec. Il B. that the curves associated with smalteshow a stronger an-
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0 (solid curve, (b) 6>0 (black dashed curygand(c) 6<0
) = (gray dashed curyeFrom Fig. 4 it is evident that there is a
P n=6 stronger splitting in the shear thickening case.
— These second-order effects regarding tip splitting are con-
T n=5 sistent with the first-order effects described in Sec. Il A.
o With respect to the shear-thinning behavior, our analytical
- results agree with numerical simulatiofi?,13 and experi-
ments[4,6] of fully nonlinear stages of interface evolution.
In addition, we detect favored tip splitting in the shear-
- thickening case, a relevant nonlinear behavior not previously
reported in the literature. We have also verified that, for a
given moden, smaller values of the surface tension param-
etery lead to enhancemefisuppressionof splitting events
004 002 0 002 004 for 6<0 (6>0).
8 A physical mechanism that seems to be at work in shear-
thinning case has been proposed in REf4—13: viscosity
FIG. 3. Variation of T(Zn'n) as a function of the non- is lowered in high-SheaI’ regionS, which are in front of the
Newtonian paramete, for three different Fourier modesn( fingers. Hence the tip of a finger experiences less resistance
=4,5,6). The injection rat® =27 cn?/s and y=1/100 cni/s.  than the part of the interface near the tip. This suggests that
The units of T(2n,n) and § are (cm/sy* and (cm/s)?, respec- tip splitting would be suppressed if the fluid shear thins. Our
tively. second-order mode-coupling results indicate that a similar
mechanism is at work in the shear-thickening case: the resis-
gular inclination with respect to the horizon@lxis. There- tance would be increased at the finger tips, suggesting that
fore, lower Fourier modes would be more sensitive to variatip splitting would be increased.
tions in §.
Further inspection of Fig. 3 reveals that, féi>0, 2. Action of the paramete® on sidebranching

T(2n,n) becomes less negative asncreases, meaning that  apqiher relevant non-Newtonian effect that can be stud-
the interface has less tendency toward tip splitting. In €ONjeq ¢ second order refers to the sidebranching phenomenon.
trast, foro<<0 we observe thal(2n,n) becomes more nega- |, the framework of a mode-coupling theory, sidebranching
tive as the magnitude 0f<0 increases, indicating an en- o ires the presence of mode.3f the harmonic modes,
hanced tendency of the fingers to split at their tips. Weg ositive and sufficiently large, it can produce interfacial
conclude that tip splitting is suppressed for shear-thinningypag branching out sidewards, which we interpret as side-
fluids, and enhanced for shear-thickening ones. This fact iBranching.

more clearly illustrated in Fig. 4. In Fig. 4, we plot the fluid-  ~gnsider the influence of the fundamental maodand its

fluid interface for a certain timet30 s), considering the | 4rmonic 1. on the growth of mode 18 The equation of
interaction of two cosine modda fundamentah=4 and its motion for tr,1e cosine B8 mode is

harmonic 21=8), for three diferrent values af: (a) 6=0

15 _—

T(2n,n)
\

. 1
ag=\(3Mag,+5 S(3n)asazn, (34)

where the sidebranching functionS(3n)=[T(3n,n)
+T(3n,2n)] can be easily obtained from E(B3). By ana-
lyzing Eqg. (34), we observe that moden3can be spontane-
ously generated due to the driving term proportional to
a,ay,, such that it enters through the dynamics even when it
is missing from the initial conditions. The existence and
phase of mode 18 depends on the interplay of the modes
and 2. Sidebranching would be favoredat,>0.

To study the growth of moderBas the non-Newtonian
parameters is varied, we plotS(3n) as a function ofs in
Fig. 5. We consider a particul& and R combination that
the interaction of two cosine modes=4 and H=8. Three Correspo_n_ds to the onse_zt of growth of_mode[ﬁe., obeying
values of the non-Newtonian parameter are consideted (black ~ the condition\(3n)=0] in the Newtonian limit5=0. From
solid curve, 5=-+0.01 (cm/sy2 (black dashed curye and  Fi9. 5, one can verify that in the weak shear limit we con-
5=—0.01 (cm/s) 2 (gray dashed curve Other physical param- Sider in this work,S(3n) is negative for all values 0. As
eters area,(0)=0.001 cm,R,=0.3 cm, y=0.025 cni/s, andQ shown in Sec. Il B 1, starting with a fundamental magg
=37 cni/s. Splitting is favored for shear-thickening fluiggray ~ the harmonic modey, is driven negative. Hence, the prod-
dashed curve uct S(3n)a,a,, in Eq. (34) is positive, drivingag,>0.

FIG. 4. Snapshot of the fluid-fluid interfacet=<30 s) for
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g N(K)=[K[[vo(1+6v2) — ¥k (1 +260v5)].  (36)
02l n=6 In addition, the only nonzero second-order mode-coupling
. terms are
= 04 n=5 Gn(k,k")=[k|[1—sgr(kk")], (37
M ! !
21 Gun(k,K)=—[KlvZ[1-sgrkk')], (38)
0.6
and
0.8 ] V.
_— | p= Inn(k k') =—-{3=sgrik’(k—k")]+2 sgik(k—k")]}.
004 002 0 002 0.04 (39)
8 Note that all rectangular limit expressiof86)—(39) are time

o _ . . independent, and preserve the reflection symmetries shown
FIG. 5. \Variation .Of the Sldebranchlng functios(3n) in Eq (30) Based on these findingS, and using aﬁ) we
=T(3n,n)+T(3n,2n) with the non-Newtonian paramet&, for  gptain a more compact mode-coupling equation for non-

modes n=4,5,6. The injection rateQ=2m cn/s and v Newtonian flow in rectangular Hele-Shaw cells:
=1/100 cn¥/s. The units ofS(3n) and & are (cm/sy! and

(cm/s) 2, respectively. ] .

GENK) Gt 2 [Gr(kk)+8 Gn(kiK)1Zk o
Whether sidebranching actually occurs depends on the k' #k0

magnitude ofas,. Indeed, our discussion shows the pres- .o

ence ofaz,>0 even in the case of Newtonian fluids, where +é E INNCK KT i i - (40)

sidebranching does not occur. Why does sidebranching occur K #kO

for shear-thinning fluids? We speculate that its origin may lie The rectangular mode-coupling equati@®) is useful to

in the cubic form of our modified Darcy’s law, Ep), which  stdy the influence of weak shear-effects on the development

will add a term of the form&aﬁ to az,. Unfortunately, we of the fluid-fluid interface in rectangular cells. First, we ex-

have not calculated this term since we stopped our derivatioamine fingertip-splitting related issuéfnger narrowing or

at second order. Third-order calculations for non-Newtoniarwidening. As discussed in Sec. Ill B 1, we analyze the in-

Hele-Shaw flows lead to several new and complex modefluence of the fundament&l on the growth of its harmonic

coupling terms, whose analysis and interpretation are not &k. The equation of motion for the cosine modk &

all obvious, and go beyond the scope of our current work.

Furthermore, there is a delicate interplay of moaeahd S 1 2
mode 2, described by the evolution equatid@4) and a aZk_)‘(Zk)aZk+§ T(2kk) ag, (42)
similar expression for the growth of moda 2
where
. 1
a2n=A(2n)a2n+§[T(2n,n)aﬁ+ S(2n)ayaz,], (35 T(2k,k) = 8] 2K?v (v — ¥ K?)?]. (42

Note that the driving force tern(2k,k) vanishes in the
where S(2n)=[T(2n,—n)+T(2n,3n)]>0. Hence, side- Newtonian limit6=0. This agrees with the results obtained
branching via a positive, will tend to drive a,,, positive  in Ref. [14] for Newtonian rectangular flow. Notice further,

(or at least less negatiyeinhibiting tip splitting but also that for the non-Newtonian casé# 0) the harmonic mode
reducing the growth rate afs, itself. 2k grows spontaneously even if missing from the initial con-

ditions. The selected sign af,, is given by the sign of
T(2k,k) and thus is dictated by: if 6>0 (6<0), T(2k,k)
is positive(negative, and hence,, >0 (a,<0).

It is interesting to study how the main interfacial features Considering the casé>0, this means that the fingers
examined in the radial geometry behave if we consider théecome narrower as the shear-thinning behavior becomes
flow of non-Newtonian fluids inrectangular Hele-Shaw more pronounced. Moreover, by inspecting E4R) we ob-
cells. A mode-coupling equation describing the system camserve that the width of the fingertips decreases for increas-
be obtained if we take the “rectangular geometry limiR:  ingly larger values of the flow velocity., . Of course, these
—oo and Q—o, such thatQ/(2wR)=v.. andn/R=k re-  effects are minimized for larger values of the surface tension
main constant, where,, is the flow velocity at infinity andk ~ parametery. All these results are in agreement with recent
denotes the wave number of the disturbance. In this limit thexperimental 16] and theoretical investigatiorid7,18 for
interface evolution reverts to the evolution of the rectangulamweak shear-thinning flows in rectangular geometry, in which
flow geometry, with linear growth rate given by shear thinning narrows the width of steady state fingers.

C. Rectangular geometry limit
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If we takek=k*~ \v../3y as the fastest growing mode, IV. CONCLUDING REMARKS
then\ (2k) <0 so that the exponential growth af; is pre-
vented. Unlike the case of radial flow where any made
eventually goes unstable for sufficiently larBethe growth
ratesA (k) in the rectangular geometry are time independent

Instead of exponential growth @k, we instead expect its dendritic interfacial instabilities. Due to the complicated dy-

amplitude to saturate at the valdg2k,k)ag/[ =21 (2K) ] namics of the system, and also from the limitations imposed
obtained by settinga, =0 in Eq. (41). Alternatively, one by purely linear analysis, the majority of the theoretical stud-
could specially prepare an initial condition with an initial jes in this area of research rely heavily on sophisticated nu-
perturbation of wave vectdk sufficiently small so that B merical methods. In this work, we developed an alternative
still_lies within the band of unstable modésp to about theoretical approach to the problem, which allowed us to
Vu./7v), in which case modeRwill be spontaneously gen- address important nonlinear issues analytically. A key point
erated and able to grow to a considerable magnitude. in our derivation was the introduction of velocity vector po-
For completeness, we also discuss the shear-thickenirtgntial (as opposed to scalar potentjakhich was demanded
case: for6<0 the functionT(2k,k) is negative, favoring by the non-Newtonian fluid flow.
fingertip widening. Even though this shear-thickening behav- We started our investigation by analyzing the role of fluid
ior has not been studied experimentally, the broadening ofiscosity anisotropy on the development of the Saffman-
the fingers in shear-thickening flow in rectangular cells hasraylor instability in radial Hele-Shaw cells. To approach the
been theoretically predicted by numerical simulatiph8].  problem analytically we considered the weak shear limit, and
Our analytical results reinforce the correctness of such nufocused on the onset of nonlinear effects. In order to examine
merical predictions. the influence of shear thinning and shear thickening on the
Finally, we briefly discuss sidebranching behavior in rec-shape of the emerging patterns, we derived a mode-coupling
tangular Hele-Shaw cells. We consider the influence okquation which is ideally suited to describe the weakly non-
modesk and X on the evolution of modeld In this case, linear interface evolution. Our analytical results show that
the relevant equation of motion has the form fingertip splitting is enhanceddiminished in the case of
shear-thickening-thinning) fluids. We applied the rectangu-
, 1 lar geometry limit to our radial mode-coupling equations of
ag=N(3K)ag+75 S(3K) aa, (43)  motion, and also studied fingertip and sidebranching behav-
iors in rectangular cells. Our main findings predict fingertip
. ) i i widening (narrowing for shear-thickeningthinning fluids.
where, as it was in the radial flow case, the coeffici{#k) In neither the radial nor the rectangular geometry limit
is the sum ofT (3k,k) andT(3k,Z), were we able to show the spontaneous appearance of side-
branching, except for some specially prepared initial condi-
S(3k) = 8[8K*v..(v—y KA (v—47k®)]. (44  tions in rectangular geometry. We speculate that extending
the current approach to third order could shed more light on
The favored sign ohg, depends on the sign of the product this problem.

Visually striking patterns arise when a less viscous New-
tonian fluid displaces a more viscous non-Newtonian fluid in
the confined geometry of a Hele-Shaw cell. These complex
patterned structures are the result of fingertip splitting and

a,ay, and also on the sign d&(3k). If § is positive(shear In summary, our analytical mode-coupling approach de-
thinning), then S(3k) is negative in the band of wave vec- tects and predicts several features of the patterns formed in
tors, non-Newtonian Hele-Shaw flows in both radial and rectan-
gular geometries. Furthermore, it predicts some behaviors

m< k<\o.17. (45) not yet investigated in the literature, such as the evolution

mechanisms involving tendency towards advanced fingertip

. ) . ) . splitting and reduction of sidebranching for shear-thickening

and positive outside this band. As we saw previously in th&,ids. We hope the main results presented in this paper will
case of mode R if the fundamental mode is taken as the h.ompt further theoretical and experimental work on non-
fastest growing mode=k*, then exponential growth of the  Newtonian Hele-Shaw flows, especially in the area of early
harmonic X is inhibited becausa (3k) <0. Instead it will  siage transients in rectangular geometry where our theory

saturate at a magnitude 8{3k)aa,/[ —2A(3k)]. makes specific predictions that have not been subject to ex-
However, for a specially prepared initial condition per- perimental or numerical check.

turbed at wave vectok~k*/3, the harmonics R and X
will both be able to grow. By Eq(41) a positive harmonic
modea,, >0 will appear spontaneously. Then, by E43),
modesa, anday will conspire to create moda;, . Because J.A.M. thanks the Brazilian Research Council - CNPq
k~k* /3 lies outsidethe wave vector bant#5), the value of  (through its PRONEX Progranfor financial support. The
S(3k) is positive Hence the modas is driven positive, the  work of M.W. was supported in part by the National Science
sign needed to create side branches. While this conclusion Boundation, Grant No. DMR411198. M.C. acknowledges
only tentative (due to our neglect of the complete set of support from Carnegie Mellon University and the University
third-order termy it would be interesting to test via numeri- of Maryland (National Science Foundation Grant No. DMR-
cal simulation or experiment. 00-80008.
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APPENDIX: SECOND-ORDER MODE-COUPLING TERMS o (e In|_j[2a(m) [n] 28(n0) _ f(nm)
This appendix presents the expressions for the second- " R m n [n " 2(n|+D))
order Newtonian i), and non-Newtonian NN) mode- (Ad)

coupling coefficients which appear in EQ9):
' In|  R?

In| |R[1 4 nm 3m? Hyn(n,m) = =—————— — f(n,m), A5
Fa(nm)="g | 5| ~sarnm) |~ % 1= 2= WO =S ® 0 (B9)
(A1) and

n|. | R[2a(m) [n| 28(n f(n,m
FNN(n,m):%RZ{ﬁ ar; )g— 'ﬁf|) 2(|(n|+)1) 3 ~n| & f "
NN(n,m)—m (n,m), (AB)
y  2|n| nm 3m? .
TRMEDT 2 2] B2 where
n| 1 In|
GN(n,m)=ﬁ 1—sgr(nm)—m, (A3) f(n,m)= 7h(n,m)+k(n,m) . (A7)
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